The world according to zebrafish: how neural circuits generate behavior
نویسندگان
چکیده
Understanding how the brain controls motor behavior and generates cognitive functions still remains one of the most challenging goals in science and neuroscience in particular. Toward this goal it is important to use a multidisciplinary approach involving genetics, molecular biology, optics, ethology, neurobiology, and mathematical modeling. This strategy is most efficient when using animal models with relatively simple nervous systems still capable of producing complex motor behaviors. Genetically tractable models enable labeling specific neurons and monitoring and manipulating neuronal activity of single cells or entire circuits via optogenetics (Fenno et al., 2011; Akerboom et al., 2013; Aston-Jones and Deisseroth, 2013; Chen et al., 2013; Marvin et al., 2013). The zebrafish Danio rerio is a small shoaling tropical freshwater fish native to rivers of south Asia. It is a member of the teleostei infraclass, a monophyletic group that emerged ∼340 million years ago (Amores et al., 2011). Compared to other vertebrate species, teleost fish underwent an additional round of whole-genome duplication (Meyer and Schartl, 1999). Zebrafish has been used for developmental and genetic studies since the late 1950s. By the 1980s, zebrafish was already used as a genetically tractable organism. In 2001 the zebrafish genomesequencing project was launched and recently its protein-coding genes were compared to those of humans (Friedrich et al., 2010; Howe et al., 2013). This large-scale project showed that zebrafish have 26,206 protein-coding genes (Collins et al., 2012), with ∼70% of human genes having at least one obvious zebrafish ortholog (Howe et al., 2013). The combination of high-throughput mutagenesis and TILLING (Wienholds et al., 2003) or specifically targeted DNA sequence mutations [Zinc-finger nucleases (Doyon et al., 2008), TALENS (Sander et al., 2011) and CRISPR (Hwang et al., 2013)], enable DNA precise editing and thus the generation of transgenic and/or specific mutant zebrafish lines. Among this increasing collection of available mutants, several were identified as vertebrate models of certain human neurodevelopmental, neurological, and neurodegenerative syndromes and diseases [e.g., Parkinson’s (Lam et al., 2005; Flinn et al., 2008), Alzheimer’s (Newman et al., 2007, 2011), Rett’s syndrome (Pietri et al., 2013), ALS (Gibbs et al., 1976; Burrill and Easter, 1994; Da Costa et al., 2014), tinnitus (Wu et al., 2014), psychiatric disorders (Norton, 2013), Huntington’s disease (Schiffer et al., 2007), Lowe’s syndrome (Ramirez et al., 2012), and more (Sager et al., 2010)]. Furthermore, large-scale enhancer-trap screens in combination with DNA insertion methods (e.g., Tol2, Kawakami and Shima, 1999), bioinformatics and the Gal4/UAS system generated a vast collection of transgenic fish and a large database of tissue/cell-type specific promoters (Scott et al., 2007; Asakawa et al., 2008). An additional advantage of the zebrafish larva model is its transparent skin, small size and the fact that it mainly uses cutaneous breathing (up to ∼14 days post-fertilization, dpf). These three characteristics make possible to restrain larvae in a drop of low-melting agarose without the use of any paralyzers or anesthetics, in intact conditions, without the use of surgical procedures to expose and image the brain. With the development of recent state-of-the-art optical techniques including two-photon scanning microscopy (Ahrens et al., 2012; Portugues et al., 2014), Single plain illumination microscopy (Ahrens et al., 2013b; Panier et al., 2013), lightfield microscopy (Broxton et al., 2013), and Spatial light modulator microscopy (Quirin et al., 2013), the entire brain can be now simultaneously imaged and its activity monitored with single or near single-cell resolution. On the other hand, fiber optics (Miri et al., 2011; Kubo et al., 2014), Digital micromirror devices (Wyart et al., 2009), and holographic pattern illumination (Vaziri and Emiliani, 2012) can be used to stimulate optogenetic tools in single cells or large neuronal circuits. The combination of all these techniques together with the larva’s small size and skin transparency enable monitoring in toto brain dynamics and manipulate its activity in an intact, non-anesthetized, non-paralyzed vertebrate (Ahrens et al., 2013b; Panier et al., 2013; Portugues et al., 2014). From a behavioral point of view, upon hatching the larva needs to immediately catch prey and avoid predators in order to survive. This strong evolutionary pressure leads to a rapid development of functional sensory systems in general, and vision in particular,
منابع مشابه
Imaging zebrafish neural circuitry from whole brain to synapse
Recent advances in imaging tools are inspiring zebrafish researchers to tackle ever more ambitious questions in the neurosciences. Behaviorally fundamental conserved neural networks can now be potentially studied using zebrafish from a brain-wide scale to molecular resolution. In this perspective, we offer a roadmap by which a zebrafish researcher can navigate the course from collecting neural ...
متن کاملFrom Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response
Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienti...
متن کاملMind the fish: zebrafish as a model in cognitive social neuroscience
Understanding how the brain implements social behavior on one hand, and how social processes feedback on the brain to promote fine-tuning of behavioral output according to changes in the social environment is a major challenge in contemporary neuroscience. A critical step to take this challenge successfully is finding the appropriate level of analysis when relating social to biological phenomen...
متن کامل[Visual system and prey capture behavior of larval zebrafish].
Studying neural circuits is a crucial step for understanding neural mechanisms underlying animal behaviors. Larval zebrafish is a low vertebrate animal model with incomparable advantages in neural circuit study. In this review, we describe the zebrafish visual system and its downstream targets, with special emphasis on their possible roles in prey capture behavior. Prey capture is executed main...
متن کاملGenetic visualization with an improved GCaMP calcium indicator reveals spatiotemporal activation of the spinal motor neurons in zebrafish.
Animal behaviors are generated by well-coordinated activation of neural circuits. In zebrafish, embryos start to show spontaneous muscle contractions at 17 to 19 h postfertilization. To visualize how motor circuits in the spinal cord are activated during this behavior, we developed GCaMP-HS (GCaMP-hyper sensitive), an improved version of the genetically encoded calcium indicator GCaMP, and crea...
متن کاملDevelopmental and architectural principles of the lateral-line neural map
The transmission and central representation of sensory cues through the accurate construction of neural maps is essential for animals to react to environmental stimuli. Structural diversity of sensorineural maps along a continuum between discrete- and continuous-map architectures can influence behavior. The mechanosensory lateral line of fishes and amphibians, for example, detects complex hydro...
متن کامل